Introduction. To obtain metallic glass coatings it is necessary to achieve high cooling rates of melt. FeWCrMoBC composition has high melt viscosity and sufficient glass-forming ability to fix of the amorphous state at cooling rates implemented by electric discharge alloying with the use of a crystalline electrode. The purpose of the work is one-stage deposition of amorphous coating by electric discharge alloying, using crystalline anode FeWCrMoBC, prepared by casting and studying the properties of modified surface of carbon steel: wettability, high-temperature resistance, tribological properties. Methods and Results. The structure of anode and coatings was investigated by X-ray diffraction analysis in CuKα radiation on a DRON-7 diffractometer. In contrast to the X-ray patterns of the anode material, sharp Bregg reflexes were not observed on the X-ray patterns of the coatings, but a wide halo was present in the range of angles 2Ѳ = 40–50°, which indicates its amorphous structure. The cyclic high-temperature resistance test was carried out at 700 °C for 100 hours. The wear rate and coefficient of friction of the specimens were studied under dry sliding friction at a speed of 0.47 m/s at a load of 25 N with the use of a counterbody made of high-speed steel M45. The influence of the discharge pulse duty cycle on the character of mass transfer (anode erosion, cathode weight gain, mass transfer coefficient) during coating formation was investigated. With a decrease in the duty cycle of the discharge pulses up to 9 times, the erosion of the anode increased up to 5 times, and the cathode mass gain increased up to 2.2 times. The maximum mass-transfer coefficient was achieved at the highest duty cycle. An increase in a number of surface properties of carbon steel after coating was observed: the hardness of the surface of the specimens increased by 2.3–2.6 times; the average thickness of the coatings was in the range of 56–80.6 µm; the wetting angle was in the range of 108.4–121.3°; the coefficient of friction decreased by 1.2–1.4 times; the wear resistance increased by 2–3.3 times; oxidizability in air decreased by 14–18 times. Scope and Conclusions. The achieved higher properties (hardness, wear resistance, high-temperature resistance, and hydrophobicity) of the executive surfaces of parts made of carbon steel after deposition of the proposed coatings can be used in various branches of engineering production. The results of the work confirmed the possibility of deposition of metallic glass coatings by electric discharge alloying with the use of cast anode material FeWCrMoBC on carbon steel.
Read full abstract