Daucosterol is a saponin present in various natural sources, including medicinal plant families. This secondary metabolite is produced at different contents depending on species, extraction techniques, and plant parts used. Currently, daucosterol has been tested and explored for its various biological activities. The results reveal potential pharmacological properties such as antioxidant, antidiabetic, hypolipidemic, anti-inflammatory, immunomodulatory, neuroprotective, and anticancer. Indeed, daucosterol possesses important anticancer effects in many signaling pathways, such as an increase in pro-apoptotic proteins Bax and Bcl2, a decrease in the Bcl-2/Bax ratio, upregulation of the phosphatase and tensin homolog (PTEN) gene, inhibition of the PI3K/Akt pathway, and distortion of cell-cycle progression and tumor cell evolution. Its neuroprotective effect is via decreased caspase-3 activation in neurons and during simulated reperfusion (OGD/R), increased IGF1 protein expression (decreasing the downregulation of p-AKT3 and p-GSK-3b4), and activation of the AKT5 signaling pathway. At the same time, daucosterol inhibits key glucose metabolism enzymes to keep blood sugar levels within normal ranges. Therefore, this review describes the principal research on the pharmacological activities of daucosterol and the mechanisms of action underlying some of these effects. Moreover, further investigation of pharmacodynamics, pharmacokinetics, and toxicology are suggested.
Read full abstract