Two nonlocal versions of the semi-discrete modified Korteweg-de Vries equation are derived by different nonlocal reductions from a coupled equation set in the Ablowitz–Ladik hierarchy. Different kinds of exact solutions in terms of double Casoratians to the reduced equations are obtained by imposing constraint conditions on the double Casorati determinant solutions of the coupled equation set. Dynamics of the soliton solutions for the real and complex nonlocal semi-discrete modified Korteweg-de Vries equations are analyzed and illustrated by asymptotic analysis.
Read full abstract