Urban expansion has resulted in many proposed projects located over coal mining zones, which has highlighted the importance of detecting the spatial scope and water abundance of goafs before the commencement of construction work. Although electromagnetic (EM) methods have proven effective for goaf detection, their applications in intensely noisy and urbanized environments remain limited. To address this challenge, we evaluate an investigation of a coal mining goaf in Jinan, China, using the distributed wide-field EM (DWFEM) method. A third-order [Formula: see text] sequence pseudorandom signal with 39 survey frequencies is transmitted to achieve long-time data acquisition at each station. Unlike the controlled-source audio-frequency magnetotellurics method, the DWFEM records only the electric field [Formula: see text] component. The synthetic model tests and field data demonstrate the consistency of the [Formula: see text] apparent resistivity and the Cagniard resistivity in the far field. The long-time acquisition and 1C recording greatly improve data quality and exploration efficiency. We also use an all-angle resistivity calculation formula and an electrode layout method parallel to the wire source to obtain electrical connections in different directions. The DWFEM inversion results are obtained using the 1D Gauss-Newton iterative method under a plane-wave assumption. By interpolating the data from different measurement stations, we image resistivity depth profiles and obtain 3D subsurface electrical data for the subsurface from 0 to 1000 m. We interpret the obtained profiles with geologic and mining information, revealing two significant water-enriched goaf areas. Validation is performed using seismic data and drill cores. The results significantly enhance our understanding of the characteristics of the coal mine under our project and highlight the applicability of the DWFEM for detecting goafs in complex urban environments.
Read full abstract