The development of melanoma is closely related to Braf gene, which is a suitable target for CRISPR/Cas9 based gene therapy. CRISPR/Cas9-sgRNA ribonucleoprotein complexes (RNPs) stand out as the safest format compared to plasmid and mRNA delivery. Similarly, lipid nanoparticles (LNPs) emerge as a safer alternative to viral vectors for delivering the CRISPR/Cas9-sgRNA gene editing system. Herein, we have designed multifunctional cationic LNPs specifically tailored for the efficient delivery of Cas9 RNPs targeting the mouse Braf gene through transdermal delivery, aiming to treat mouse melanoma. LNPs are given a positive charge by the addition of a newly synthesized polymer, deoxycholic acid modified polyethyleneimine (PEI-DOCA). Positive charge enables LNPs to be delivered in vivo by binding to negatively charged cell membranes and proteins, thereby facilitating efficient skin penetration and enhancing the delivery of RNPs into melanoma cells for gene editing purposes. Our research demonstrates that these LNPs enhance drug penetration through the skin, successfully delivering the Cas9 RNPs system and specifically targeting the Braf gene. Cas9 RNPs loaded LNPs exert a notable impact on gene editing in melanoma cells, significantly suppressing their proliferation. Furthermore, in mice experiments, the LNPs exhibited skin penetration and tumor targeting capabilities. This innovative LNPs delivery system offers a promising gene therapy approach for melanoma treatment and provides fresh insights into the development of safe and effective delivery systems for Cas9 RNPs in vivo. Statement of significanceCRISPR/Cas9 technology brings new hope for cancer treatment. Cas9 ribonucleoprotein offers direct genome editing, yet delivery challenges persist. For melanoma, transdermal delivery minimizes toxicity but faces skin barrier issues. We designed multifunctional lipid nanoparticles (LNPs) for Cas9 RNP delivery targeting the Braf gene. With metal microneedle pretreatment, our LNPs effectively edited melanoma cells, reducing Braf expression and inhibiting tumor growth. Our study demonstrates LNPs' potential for melanoma therapy and paves the way for efficient in vivo Cas9 RNP delivery systems in cancer therapy.
Read full abstract