From an agricultural perspective, carrots are a significant tap root vegetable crop in the Apiaceae family because of their nutritional value, health advantages, and economic importance. The edible part of a carrot, known as the storage root, contains various beneficial compounds, such as carotenoids, anthocyanins, dietary fiber, vitamins, and other nutrients. It has a crucial role in human nutrition as a significant vegetable and raw material in the nutraceutical, food, and pharmaceutical industries. The cultivation of carrot fields is susceptible to a wide range of biotic and abiotic hazards, which can significantly damage the plants' health and decrease yield and quality. Scientific research mostly focuses on important biotic stressors, including pests, such as nematodes and carrot flies, as well as diseases, such as cavity spots, crown or cottony rot, black rot, and leaf blight, caused by bacteria, fungi, and oomycetes. The emerging challenges in the field include gaining a comprehensive understanding of the interaction between hosts and pathogens in the carrot-pathogen system, identifying the elements that contribute to disease development, expanding knowledge of systemic treatments, exploring host resistance mechanisms, developing integrated control programs, and enhancing resistance through breeding approaches. In fact, the primary carrot-growing regions in tropical and subtropical climates are experiencing abiotic pressures, such as drought, salinity, and heat stress, which limit carrot production. This review provides an extensive, up-to-date overview of the literature on biotic and abiotic factors for enhanced and sustainable carrot production, considering the use of different technologies for the shelf-life extension of carrots. Therefore, it addresses the current issues in the carrot production chain, opening new perspectives for the exploration of carrots both as a food commodity and as a source of natural compounds.
Read full abstract