Objective To observe the clinical features, phenotypes and genotypes in a Chinese family with choroideremia (CHM). Methods A Chinese four-generation family (15 members) with CHM, including 5 patients (4 males/1 female), 2 female carriers and 8 healthy members, was enrolled in this study. Initially all family members underwent best corrected visual acuity (BCVA), indirect ophthalmoscopy, fundus fluorescein angiography, optical coherence tomography (OCT), visual field and full view electroretinogram (ERG). BCVA was followed up for 3 years. Venous blood samples were collected, and all of the 15 coding exons and flanking intron regions were amplified in the proband by polymerase chain reaction followed by direct sequencing. Protein structure was modeled based on the protein data bank and mutations in DeepView v4.0.1 to predict the effect of the mutations. A total of 180 healthy volunteers were enrolled as control group to matching CHM gene sequences. Results The visual acuity (VA) of 3/4 adult male patients began to decrease at less than 10, 10 and 30 years old, the average BCVA was 0.43. There were characteristic signs and symptoms of CHM including narrow visual field, extinguished rod and cone response in ERG, disappeared junction line and intermediate line of photoreceptor inner segment/outer segment on OCT. After 3 years, the mean BCVA decreased to 0.11. The BCVA of one young male patient was 1.0 in both eyes with minor changes fundus and visual field. The VA of the female patient began to decrease at 50 years old, her BCVA of two eyes were 0.5 and 0.25, respectively. The fundus changes were typical of CHM, with relative scotomas in the peripheral visual field of OD, and big scotomas in the OS. After 3 years, her mean BCVA decreased to 0.2. Of 2 female carriers, one had minor fundus changes (patches of pigmentary deposits, atrophy spots of retinal pigment epithelium cells), and the other was normal. A novel heterozygous c.1837G> A mutation in exon 15 of CHM was detected in the proband, which resulted in the substitution of serine by proline at codon 613 (p.D613N). Based on molecular modeling, the misfolded protein caused by the mutation might destabilize the structure of the helix that potentially could affect the global stability of the Rep-1 protein. Conclusions A novel c.1837G> A (p.D613N) mutation may be the causative mutation for CHM in this family. Female CHM carriers may have some signs and symptoms. Key words: Choroid diseases/diagnosis; Eye diseases, hereditary; DNA mutational analysis
Read full abstract