Fruit color is a key feature of fruit quality, primarily influenced by anthocyanin or carotenoid accumulation or chlorophyll degradation. Adapting the pigment content is crucial to improve the fruit's nutritional and commercial value. Genetic factors along with other environmental components (i.e., light, temperature, nutrition, etc.) regulate fruit coloration. The fruit coloration process is influenced by plant hormones, which alsoplay a vital role in various physiological and biochemical metabolic processes. Additionally, phytohormones play a role in the regulation of a highly conserved transcription factor complex, called MBW (MYB-bHLH-WD40). The MBW complex, which consists of myeloblastosis (MYB), basic helix-loop-helix (bHLH), and WD40 repeat (WDR) proteins, coordinates the expression of downstream structural genes associated with anthocyanin formation. In fruit production, the application of plant hormones may be important for promoting coloration. However, concerns such as improper concentration or application time must be addressed. This article explores the molecular processes underlying pigment formation and how they are influenced by various plant hormones. The ABA, jasmonate, and brassinosteroid increase anthocyanin and carotenoid formation, but ethylene, auxin, cytokinin, and gibberellin have positive as well as negative effects on anthocyanin formation. This article establishes the necessary groundwork for future studies into the molecular mechanisms of plant hormones regulating fruit color, ultimately aiding in their effective and scientific application towards fruit coloration.