The Stirling engine is an external combustion engine run by the expansion and contraction of an operating gas by heat, regardless of the source of heat. It used to be called “The Dream Engine” as it is noiseless and is as efficient as the Carnot type in theory. The Stirling engine has been given more credit recently because of its promising characteristics as a clean engine regardless of heat source, with possibili-ties of becoming an ecologically sound engine. Unfortunately, techniques to minimize losses of various natures have not been established yet, even in theory, yet using present machining techniques, which are essential in obtaining high engine efficiency. Our focus was the structure of the frame, in order to increase the efficiency and output of the Stirling engine. Conventionally, frames of monocoque construction were fabricated through machining, which was limited, as to shape, by manufacturing techniques. With an aim to improve the specific output of the Stirling engine, the author, et al proposed a laminated structure frame using two different materials, which made the Stirling engine drastically lighter than the conventional Stirling engine using a monocoque frame. In terms of heat transmission, the laminated frame also presented excel-lent characteristics, proving that it could provide a higher pressure ratio than the monocoque-framed Stirling engine, working advantageously in improving overall output.
Read full abstract