We evaluated the toxicity of three insecticides (lambda cyhalothrin, spinosad, and S-1812) to the natural enemies Bracon mellitor Say, Cardiochiles nigriceps Viereck, Coleomegilla maculata De Geer, Cotesia marginiventris (Cresson), Geocoris punctipes (Say), and Hippodamia convergens Guérin-Méneville, in topical, residual, and field assays. Lambda cyhalothrin exhibited the greatest toxicity to the natural enemies. In topical toxicity tests, lambda cyhalothrin adversely affected each natural enemy species studied. Residues of lambda cyhalothrin on cotton leaves were toxic to B. mellitor, C. nigriceps, C. maculata, and C. punctipes. Interestingly, residues of this insecticide were not very toxic to C. marginiventris and H. convergens. Geocoris punctipes and C. maculata numbers in the field generally were significantly lower for lambda cyhalothrin treatments than for the other four treatments, substantiating the previous tests. Although cotton aphids began to increase over all treatments around the middle of the test period, the number of cotton aphids in the lambda cyhalothrin plots was significantly higher than the number in any of the other treatments. As cotton aphids increased in lambda cyhalothrin field plots, the predator H. convergens also increased in number, indicating that lambda cyhalothrin did not adversely affect it in accordance with the residual tests. Spinosad exhibited marginal to excellent selectivity, but was highly toxic to each parasitoid species and G. punctipes in topical toxicity tests and to B. mellitor in residual tests. Spinosad generally did not affect the number of G. punctipes, H. convergens, and C. maculata in the field except for one day after the second application for G. punctipes. S-1812 exhibited good to excellent selectivity to the natural enemies. Some reduction of G. punctipes occurred for only a short period after the first and second application of this insecticide in the field. H. convergens and C. maculata were affected very little by S-1812.
Read full abstract