We prove that the Beurling dimensions of the spectra for a class of Moran spectral measures are in 0 and their upper entropy dimensions. Moreover, for such a Moran spectral measure μ, we show that the Beurling dimension for the spectra of μ has the intermediate value property: let t be any value in 0 and the upper entropy dimension of μ, then there exists a spectrum whose Beurling dimension is t. In particular, this result settles affirmatively a conjecture involving spectral Bernoulli convolution in Fu et al. (2018) [20]. Furthermore, we prove that the set of the spectra whose Beurling dimensions are equal to any fixed value in 0 and dim‾eμ has the cardinality of the continuum.
Read full abstract