The aim of this study was to investigate the underlying mechanism that dynorphin, an endogenous kappa opioid receptor (κ-OR) agonist, triggers antiapoptotic effect of postconditioning (Postcon). In addition to vehicle treatment, Sprague Dawley rats (n = 6) underwent a 30-minute left anterior descending occlusion followed by 2 hours of reperfusion with or without a Postcon stimulus. The selective κ-OR antagonist nor-binaltorphimine (Nor-BNI) was administered intravenously 5 minutes before reperfusion. Infarct size was determined by using 2,3,5-triphenyltetrazolium chloride staining. Blood plasma concentrations of creatine kinase (CK) and lactate dehydrogenase (LDH) and myocardial caspase-3 activity were analyzed spectrophotometrically. Myocardial apoptosis was analyzed by the detection of terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate (dUTP) nick-end labeling. Immunoreactive dynorphin in blood serum and myocardium was measured by means of an antigen-competitive enzyme-linked immunosorbent assay. Infarction size, caspase-3 activity, apoptotic index, and CK and LDH levels were significantly higher in the ischemic/reperfusion group than in the vehicle group (P < 0.01). Postcon significantly reduced infarction size, caspase-3 activity, apoptotic index, CK and LDH levels (P < 0.01 vs. ischemic/reperfusion). Dynorphin content significantly increased after Postcon (P < 0.01). All the effects described above were abolished by Nor-BNI, with the exception of dynorphin content. We found that cardiac protection and antiapoptotic effect of Postcon is mediated by the activation of κ-OR. Effect of Postcon is mediated, at least partially, by enhanced dynorphin expression.