Lymphatic vessels of the heart undergo dynamic remodeling in response to physiological and pathological cardiovascular events such as development, adult cardiac maintenance, and injury repair. During pregnancy, the cardiovascular system undergoes physiological changes to meet the increased demand for blood supply to the fetus. These extensive physiological changes make pregnancy and delivery a high-risk period in a woman's life. However, whether and how cardiac lymphatics change during pregnancy is largely undefined. Therefore, we used whole mount immunofluorescent labeling and quantitative morphometric analysis to characterize the changes in cardiac lymphatic vasculature during pregnancy using two genetically distinct inbred mouse strains, C57BL/6J and BALB/cJ. When compared with age-matched, nonpregnant C57BL/6J control mice, the hearts of C57BL/6J dams in late pregnancy [gestation day 17.5 (G17.5)] undergo physiological hypertrophy. However, there were no significant changes in the cardiac lymphatic vasculature. In contrast, BALB/cJ mice do not exhibit pregnancy-induced cardiac hypertrophy at G17.5 compared with age-matched, nonpregnant mice. Yet interestingly, the cardiac lymphatic vasculature of pregnant BALB/cJ dams undergoes extensive morphological changes, including decreased lymphatic length, number of end points, and vessel branch-point junctions on the ventral side of the heart. These findings underscore the complexity of genetic and physiological factors that contribute to the heterotypic remodeling of cardiac lymphatics during late pregnancy.NEW & NOTEWORTHY Cardiac lymphatics remodel in response to physiological and pathological stresses. This study is the first to investigate cardiac lymphatic vessel changes during pregnancy. BALB/cJ mice, which do not undergo pregnancy-induced cardiac hypertrophy, show decreased lymphatic length, number of end points, and junctions on the ventral side during pregnancy. In contrast, C57BL/6J mice, which undergo pregnancy-induced cardiac hypertrophy, had no such changes. These findings underscore the complexity of genetic and physiological factors contributing to cardiac lymphatic remodeling.
Read full abstract