Post-translational SUMOylation of nuclear and cytosolic proteins maintains homeostasis in eukaryotic cells and orchestrates programmed responses to changes in metabolic demand or extracellular stimuli. In excitable cells, SUMOylation tunes the biophysical properties and trafficking of ion channels. Ion channel SUMOylation status is determined by the opposing enzyme activities of SUMO ligases and deconjugases. Phosphorylation also plays a permissive role in SUMOylation. SUMO deconjugases have been identified for several ion channels, but their corresponding E3 ligases remain unknown. This study shows PIAS3, a.k.a. KChAP, is a bona fide SUMO E3 ligase for Kv4.2 and HCN2 channels in HEK cells, and endogenous Kv4.2 and Kv4.3 channels in cardiomyocytes. PIAS3-mediated SUMOylation at Kv4.2-K579 increases channel surface expression through a rab11a-dependent recycling mechanism. PKA phosphorylation at Kv4.2-S552 reduces the current mediated by Kv4 channels in HEK293 cells, cardiomyocytes, and neurons. This study shows PKA mediated phosphorylation blocks Kv4.2-K579 SUMOylation in HEK cells and cardiomyocytes. Together, these data identify PIAS3 as a key downstream mediator in signaling cascades that control ion channel surface expression.
Read full abstract