IntroductionInsulin resistance (IR) is associated with multiple pathological features. Although p53- or TRIB3-orchestrated IR is extensively studied in adipose tissue and liver, the role of p53-TRIB3 axis in myocardial IR remains unknown, and more importantly target-directed therapies of myocardial IR are missing. ObjectivesConsidering the beneficial effects of sulforaphane (SFN) on cardiovascular health, it is of particular interest to explore whether SFN protects against myocardial IR with a focus on the regulatory role of p53-TRIB3 axis. MethodsMouse models including cardiac specific p53-overexpressing transgenic (p53-cTg) mice and Trib3 knockout (Trib3-KO) mice, combined with primary cardiomyocytes treated with p53 activator (nutlin-3a) and inhibitor (pifithrin-α, PFT-α), or transfected with p53-shRNA and Trib3-shRNA, followed by multiple molecular biological methodologies, were used to investigate the role of p53-TRIB3 axis in SFN actions on myocardial IR. ResultsHere, we report that knockdown of p53 rescued cardiac insulin-stimulated AKT phosphorylation, while up-regulation of p53 by nutlin-3a or p53-cTg mice blunted insulin sensitivity in cardiomyocytes under diabetic conditions. Diabetic attenuation of AKT-mediated cardiac insulin signaling was markedly reversed by SFN in p53-Tgfl/fl mice, but not in p53-cTg mice. Importantly, we identified TRIB3 was elevated in p53-cTg diabetic mice, and confirmed the physical interaction between p53 and TRIB3. Trib3-KO diabetic mice displayed improved insulin sensitivity in the heart. More specifically, the AMPKα-triggered CHOP phosphorylation and degradation were essential for p53 on the transcriptional regulation of Trib3. ConclusionOverall, these results indicate that inhibiting the p53-TRIB3 pathway by SFN plays an unsuspected key role in the improvement of myocardial IR, which may be a promising strategy for attenuating diabetic cardiomyopathy (DCM) in diabetic patients.