We aim to compare TRAK & TPS based isodose volumes in cervical cancer brachytherapy and assess the feasibility, accuracy and potential future implications of TRAK in this regard and as a newer emerging tool to assess treatment intensity in cervical cancer brachytherapy. one hundred patients with histologically proven squamous cell carcinoma of cervix uteri were assessed for brachytherapy (after completion of external radiation) and prospectively enrolled for the study. 60 Gy, 75 Gy, and 85 Gy isodose volumes were obtained from the TPS (VTPS) for 50, 25 & 25 patients with Manchester, Fletcher & interstitial implant respectively, receiving various fractionation schedules by Ir192 HDR remote after-loading system. Using the formula Vpred=4965(TRAK/dref)3/2+170(TRAK/dref)-1.5 the TRAK based isodose surface volumes (Vpred) were derived. Reference doses (dref) were calculated based on accumulated EBRT and brachytherapy doses. The two sets of volume were compared with respect to applicator type, standard, and optimised plan. Surrogate point A dose was also correlated. VTPS - Vpred were 5.24 ± 2.7%, all volumes being predicted within 10%. Correlation of TRAK vs VTPS60/ VTPS75/ VTPS85 showed R2 of 0.994, 0.987 and 0.971 respectively. There was no significant difference in predicted volumes with respect to applicator type. The surrogate point A showed mean volume and standard deviation of 7.44 ± 13.4%, 17.63 ± 16.38 and 3.5 ± 0.95 for Manchester optimised, Fletcher optimised and standard plans respectively. TRAK with point A (R2=0.5632), bladder (R2=0.2015) and rectal doses (R2=0.121) yielded no correlation. Volumes calculated by TRAK correlate with TPS obtained volumes significantly and the formula predicting isodose surface volumes within 10% accuracy for ICBT applications and not for pure interstitial implants. However, TRAK fails to correlate with surrogate point A, bladder and rectal doses hence has questionable utility as a marker for biological response & treatment intensity.
Read full abstract