The synthesis of 1,2-dicarba-closo-dodecaboranes (ortho-carboranes) is often low yielding which is a critical issue given the increasing use of boron clusters in material science and medicinal chemistry. To address this barrier, a series of Cu, Ag, and Au salts were screened to identify compounds that would enhance the yields of ortho-caboranes produced when treating alkynes with B10H12(CH3CN)2. Using a variety of functionalized ligands including mono- and polyfunctional internal and terminal alkynes, significant increases in yield were observed when AgNO3 was used in catalytic amounts. AgNO3 appears to prevent unwanted reduction/hydroboration of the alkyne prior to carborane formation, and the process is compatible with aryl, halo, hydroxy, nitrile, carbamate, and carbonyl functionalized alkynes.