A series of novel cobalt carbonyl ionic liquids based on 1,1,3,3-tetra-alkyl-guanidine, such as [1,1-dimethyl-3,3-diethylguanidinium][Co(CO)4] (3a), [1,1-dimethyl-3,3-dibutylguanidinium][Co(CO)4] (3b), [1,1-dimethyl-3,3-tetramethyleneguanidinium][Co(CO)4] (3c), and [1,1-dimethyl-3,3-pentamethyleneguanidinium] [Co(CO)4] (3d), were synthesized in good yields and were also characterized using infrared spectroscopy, ultraviolet-visible spectroscopy, 1H nuclear magnetic resonance (NMR) spectroscopy, 13C NMR spectroscopy, high–resolution mass spectrometry, differential scanning calorimetry, and thermogravimetric analysis. The four compounds exhibited high thermal and chemical stability. In addition, the catalytic performance of these compounds was investigated in the carbonylation of epoxides, with 3a exhibiting the best catalytic activity without the aid of a base as the additive. The catalyst could be reused at least six times without significant decreases of the selectivity or conversion rate. Moreover, the catalyst system exhibited good tolerance with terminal epoxides bearing alkyl, alkenyl, aryl, alkoxy, and chloromethyl functional groups.
Read full abstract