Carbon dioxide-based mixtures in transcritical power cycle systems can enhance thermodynamic performance but may pose risks of thermal decomposition, potentially compromising system performance and safety. This study investigates the pyrolysis mechanism of 1,1,1,2-tetrafluoroethane (R134a)/carbon dioxide (CO₂), a typical CO₂-based mixture, using reactive force field molecular dynamics (ReaxFF-MD) simulations and density functional theory (DFT). ReaxFF-MD simulations are conducted at pressures ranging from 4 to 12 MPa and temperatures between 1800 K and 3200 K for various fluid compositions, including pure R134a and R134a/CO₂ mixtures at mole ratios of 0.7/0.3, 0.5/0.5, and 0.3/0.7. The effects of temperature, pressure, and composition on the thermal decomposition of both pure R134a and R134a/CO₂ mixtures are examined, with particular focus on behavior at 8 MPa. In the thermal decomposition of R134a/CO₂ mixtures, CO₂ inhibits the formation of F radicals and reduces their concentration through chemical reactions, thereby suppressing R134a decomposition. Pure R134a decomposes into primary products such as hydrogen fluoride (HF), fluorine (F), tetrafluoroethylene (C2HF4), trifluoromethyl radicals (CF3), and diatomic carbon (C2). The addition of CO2 results in the formation of additional products, including carbonyl fluoride (COF), oxygen (O), hydroxyl (HO), and formyl radicals (CHO). The decomposition pathways involve two reaction types: self-decomposition reactions dominate initially, while extraction reactions become more prominent later. Using the DFT approach, reaction energy barriers are analyzed to corroborate the ReaxFF-MD simulation findings. Moreover, the apparent activation energies for these reactions are quantified using first-order kinetics based on the Arrhenius equation, indicating that the thermal decomposition of R134a/CO2 mixtures is more challenging than that of pure R134a.
Read full abstract