Export of particles was studied at the equator during an El Nin˜o warm event (October 1994) as part of the French ORSTOM/FLUPAC program. Particulate mass, carbon (organic and inorganic) (C), nitrogen (N), and phosphorus (P) export fluxes were measured at the equator in the western and central Pacific during two 6–7 day-long time-series stations located in the warm pool (TS-I at 0°, 167°E) and in the equatorial HNLC situation (TS-II at 0°, 150°W), using drifting sediment traps deployed for 48 h at four depths (between, approximately, 100 and 300 m). The particulate organic carbon (POC) fluxes at the base of the euphotic zone (0.1 % light level), were approximately four times lower at TS-I than at TS-11 (4.1 vs. 17.0 mmol C m -2 day -1). Conversely, fluxes measured at 300 m were similar at both sites (3.6 vs. 3.7 mmol C m −2 day −1 at TS-I and TS-11, respectively). This change in export fluxes was in good agreement with food-web dynamics in the euphotic zone characterized by an increase in plankton biomasses and metabolic rates and a shift towards larger size from TS-1 to TS-II. The POC flux profiles indicated high remineralization (up to 78%) of the exported particles at TS-II, between 100 and 200 m in the Equatorial Undercurrent. According to zooplankton ingestion estimates from 100 – 300 m, 60% of this POC loss could be accounted for by zooplankton grazing. At TS-I, no marked increase of flux with depth was observed, and we assume that loss of particles was compensated by in-situ particle production by zooplankton. Fluxes of particulate nitrogen and phosphorus followed the same general patterns as the POC fluxes. The elemental and pigment composition of the exported particles was not very different between the two stations. In particular, the POCYN flux molar ratio at the base of the euphotic zone was low, 6.9 and 6.2 at TS-1 and TS-II, respectively. For particulate inorganic carbon (mainly carbonate) flux, values at the base of the euphotic zone averaged 0.9 mmol C m-2 day-1 at TS-I and 2.3 mmol C m-2 day-1 at TS-11 (corresponding to a 2.6-fold increase) and showed low depth changes at both stations. POC export flux (including active flux associated with the interzonal migrants) at the 0.1 % light level depth represented only 8% of primary production (1°C uptake) measured at TS-1 and 19% at TS-II. For the time and space scales considered in the present study, new primary production, as measured by the 15N method, was in good agreement with the total export flux in the HNLC situation, thus leading to negligible dissolved organic carbon (DOC) or nitrogen (DON) losses from the photic zone. Conversely, export flux was found to be only 50% (C units) and 60% (N) of new production in the oligotrophic system, either because of an overestimation by the 15N method or of a significant export of DOC and DON. Comparison with other oceanic regions shows that export flux in the warm pool was within the same range as in the central gyres. On the other hand, comparison with EgPac data in the central Pacific suggests that there is no straightforward relation between the magnitude of the export and surface nitrate concentrations.