Excessive emissions of greenhouse gases, primarily carbon dioxide (CO2), have garnered worldwide attention due to their significant environmental impacts. Carbon capture, utilization, and storage (CCUS) techniques have emerged as effective solutions to address CO2 emissions. Recently, direct air capture (DAC) and bioenergy with carbon capture and storage (BECCS) have been advanced within the CCUS framework as negative emission technologies. BECCS, which involves cultivating biomass for energy production, then capturing and storing the resultant CO2 emissions, offers cost advantages over DAC. Algae-based CCUS is integral to the BECCS framework, leveraging algae’s biological processes to capture and sequester CO2 while simultaneously contributing to energy production and potentially achieving net negative carbon emissions. Algae’s high photosynthetic efficiency, rapid growth rates, and ability to grow in non-arable environments provide significant advantages over other BECCS methods. This comprehensive review explores recent innovations in algae-based CCUS technologies, focusing on the mechanisms of carbon capture, utilization, and storage through algae. It highlights advancements in algae cultivation for efficient carbon capture, algae-based biofuel production, and algae-based dual carbon storage materials, as well as key challenges that need to be addressed for further optimization. This review provides valuable insights into the potential of algae-based CCUS as a key component of global carbon reduction strategies.
Read full abstract