The structural stability and Na+ diffusion kinetics of two-dimensional layered materials are critical to deliver efficient Na+ storage. Here, few-layer MoS2 nanocrystals were anchored on N-doped carbon nanosheets (MoS2@NCs), which realizes fast Na+ storage and long cycle life. The tight chemical bonding (Mo-N-C bonds) of N atom to MoS2 nanocrystals and carbon nanosheets improves the electronic conductivity and the structural stability of MoS2@NCs, while the carbon nanosheets network supports the MoS2@NCs structure to reduce the volume effect and provides a surface-dominated mechanism for fast Na+ diffusion. Density functional theory results show that the low diffusion barrier of MoS2@NCs with Mo-N-C bonds accelerates the Na+ transfer kinetics. Consequently, MoS2@NCs possesses superior rate capability of 307 mA h g−1 at 20 A/g and excellent long-term stability over 3,000 cycles. The reversible Na+ (de)insertion behavior is elucidated through in-situ EIS and ex-situ XRD technology.In addition, the assembled MoS2@NCs//Na3V2(PO4)3/C full cell also exhibits a high reversible capacity and good cycle stability. This work opens a new route for optimizing two-dimensional layered materials that can be used for high energy density rechargeable SIBs.
Read full abstract