ABSTRACT We present a first 3D magnetohydrodynamic (MHD) simulation of oxygen, neon, and carbon shell burning in a rapidly rotating $16\hbox{-}\mathrm{M}_\odot$ core-collapse supernova progenitor. We also run a purely hydrodynamic simulation for comparison. After $\mathord \approx 180\mathrm{s}$ ($\mathord \approx$ 15 and 7 convective turnovers, respectively), the magnetic fields in the oxygen and neon shells achieve saturation at 1011 and 5 × 1010 G. The strong Maxwell stresses become comparable to the radial Reynolds stresses and eventually suppress convection. The suppression of mixing by convection and shear instabilities results in the depletion of fuel at the base of the burning regions, so that the burning shell eventually move outward to cooler regions, thus reducing the energy generation rate. The strong magnetic fields efficiently transport angular momentum outwards, quickly spinning down the rapidly rotating convective oxygen and neon shells and forcing them into rigid rotation. The hydrodynamic model shows complicated redistribution of angular momentum and develops regions of retrograde rotation at the base of the convective shells. We discuss implications of our results for stellar evolution and for the subsequent core-collapse supernova. The rapid redistribution of angular momentum in the MHD model casts some doubt on the possibility of retaining significant core angular momentum for explosions driven by millisecond magnetars. However, findings from multidimensional models remain tentative until stellar evolution calculations can provide more consistent rotation profiles and estimates of magnetic field strengths to initialize multidimensional simulations without substantial numerical transients. We also stress the need for longer simulations, resolution studies, and an investigation of non-ideal effects.
Read full abstract