Fine roots and absorptive roots play key roles in acquiring resources throughout soil profiles and determining plant functions along environmental gradients. Yet, the geographical pattern of carbon allocation in fine roots, particularly in absorptive roots, and their relations with plant sizes and evironment are less understood. We sampled 243 xerophytic shrubs from 63 species distributed along the latitudinal gradient (23°N to 32°N) in dry valleys of southwest China and synthetically measured biomass fractions of plant organs, especially fine roots and absorptive roots (1st to 3rd root order). We identified latitudinal patterns of biomass allocation fractions of organs and their relationships with plant sizes and environmental factors. The latitudinal patterns of both absorptive root and fine-root fractions followed weak unimodal distributions; stem biomass fraction increased with the latitude, while the leaf biomass fraction decreased. The fraction of fine-root biomass had negative relationships with plant height and root depth. The fractions of root, fine root, and absorptive root biomass were largely explained by soil moisture. Furthermore, fraction of fine-root biomass increased in a relatively humid environment. Overall, soil moisture was the most important factor in driving latitudinal patterns of biomass fraction. Our study highlighted that functional redistribution of root system biomass was the critical adaptive strategy along a latitudinal gradient.