Carbohydrate-protein linkage region of proteoglycans is a key oligosaccharide structure because their sulphated and/or phosphorylated analogues control the biosynthesis of glucosaminoglycans or galactosaminoglycans. Therefore, synthesised sulphated and/or phosphorylated analogues were characterised by tandem mass spectrometry in the negative-ion mode. Results demonstrated that the product ion profile was characterised by glycosidic and cross-ring cleavages depending on the position and the type of the charged group (sulphate, phosphate or carboxylate). When the above compounds were sulphated and phosphorylated, the ion found at m/z 79 was the only one that demonstrated a phosphate group on the structure. The data also suggested that when a sodium cation was present in a sulphated and phosphorylated structure, the phosphate group in most cases was neutralised by the sodium cation, and therefore cleaved off the molecule, while the sulphate group was carrying the negative charge.
Read full abstract