AbstractThe command and control (C2) network is a complete organizational system that connects operational units at all levels based on command relationships. Its purpose is to ensure that the C2 system can fully perform its command functions, achieving high precision and efficiency in decision‐making. As warfare models evolve rapidly from network‐centric warfare to multi‐domain operations, traditional C2 networks, which utilize a tree structure for connectivity, exhibit only a single hierarchical relationship, making it challenging for different operational units at the same level to interconnect. Furthermore, with the diversification of warfare, the three types of nodes in traditional C2 network models are insufficient to encompass all operational units. In response, this paper proposes a method for edge weighting in C2 networks based on a combination of node attributes and network attributes described by complex network theory. The node attributes mainly include node information transmission capacity, task coordination ability between nodes, node distance, and response time. The network attributes are primarily represented by hierarchy and betweenness centrality. Additionally, the traditional C2 network model's three types of nodes are expanded to five types of nodes. Based on the edge weighting method, internal command edges, inter‐network collaborative edges, and cross‐level command edges are generated within the C2 network. Simulation results demonstrate that the constructed C2 network model's characteristic parameters are superior to those of traditional C2 networks and collaborative C2 networks. This improvement enhances command and coordination abilities, aligns more closely with real‐world scenarios, and effectively improves network command and control efficiency.