This paper presents an absolute capacitive angular-position sensor with a contactless rotor. The sensor is mainly composed of three parts: the capacitive sensing element, a signal processor, and a microcontroller. The electrically floating rotor can be either conductive or dielectric. For the dielectric material, we chose plastic, and for the conductive rotor, we chose aluminum. The sensing element has a redundant structure, which reduces mechanical nonidealities. The signal processor has a multicapacitance input and a single output, which is a period-modulated square-wave voltage. The microcontroller acquires output data from the processor and sends them to a PC, which calculates the rotor position. Theoretical analysis, supported by experimental results, show that the sensitivity to mechanical nonidealities of the sensing element is higher in the case of a conductive rotor. The resolution of the capacitive angular-position sensor over the full range (360/spl deg/) was better than 1. The measured nonlinearity was /spl plusmn/ 100 and /spl plusmn/ 300 for the dielectric and the conductive rotor, respectively.
Read full abstract