Reducing the intake of trans and saturated fatty acids is a trend in healthy eating. In this study, the oleogels were prepared from rice bran oil (RBO), candle wax (CDW), beeswax (BW), rice bran wax (RBW), and carnauba wax (CRW), respectively, and the results based on their physicochemical properties and crystal structures at critical concentrations, 6 wt.%, 8 wt.%, and 10 wt.%, were determined to further investigate the oleogels as a shortening substitute in cookie recipes. Oleogel has a smooth, spreadable β' crystal shape which creates excellent sensory properties and improves the texture, but also has some economic benefits. A comparison between the oleogels formed at critical concentrations and those with improved mass fractions was performed in several analyses such as PLM and texture, and the oleogels with higher mass fractions had a greater hardness and stickiness and denser crystal structures. This study was used to optimize the cookie recipe by partially replacing shortening with oleogel and preparing the cookies according to the 0:1, 3:7, 1:1, 7:3, 1:0 oleogel shortening mixture, respectively. Based on the results of the textural analysis, a colorimetric and sensory evaluation of the optimized formulation of oleogels in cookies, it was evident that BW and RBW oleogels have more potential to replace shortening in cookies than CDW and CRW oleogels. In particular, oleogels with a concentration of 6 wt.% RBW (RBW-6) and at a 7:3 (oleogel:shortening) shortening replacement exhibited a hardness and crispness of 15.75 N and 97.73 g, respectively, with an L* value of 66.66 and a sensory score of 22.32 ± 0.09. The value for the color perception difference (dE) between the cookies and the control group was -3.73, which allowed us to obtain a good product with a quality and characteristics similar to shortening. This supports the feasibility of new solid fats to replace traditional plastic fats in baked goods.
Read full abstract