Camouflaged object detection aims to accurately identify objects blending into the background. However, existing methods often struggle, especially with small object or multiple objects, due to their reliance on singular strategies. To address this, we introduce a novel Search and Recovery Network (SRNet) using a bionic approach and auxiliary features. SRNet comprises three key modules: the Region Search Module (RSM), Boundary Recovery Module (BRM), and Camouflaged Object Predictor (COP). The RSM mimics predator behavior to locate potential object regions, enhancing object location detection. The BRM refines texture features and recovers object boundaries. The COP fuse multilevel features to predict final segmentation maps. Experimental results on three benchmark datasets show SRNet's superiority over SOTA models, particularly with small and multiple objects. Notably, SRNet achieves performance improvements without significantly increasing model parameters. Moreover, the method exhibits promising performance in downstream tasks such as defect detection, polyp segmentation and military camouflage detection.