The aim of this work is to examine the correlation between measured instability of model flavor compounds in glassy matrices with the calorimetric relaxation times of the matrices. Spray-dried carbohydrate matrices were chosen as the model compounds for this study. Enthalpy relaxation times were determined for spray-dried carbohydrate matrices using differential and isothermal calorimetric methods. The losses of the volatile methyl acetate, ethyl acetate and limonene, as well as formation of limonene oxidation products, were measured by gas chromatography. Storage conditions were 30 and 40 °C, with samples equilibrated with 11, 23, 33 and 43 % RH at each temperature. A comparison of the relaxation times for temperatures below Tg was made using Modulated DSC (MDSC) and a Thermal Activity Monitor (TAM). TAM yields significantly lower values for relaxation times implying that it is capturing some of the faster dynamics as well as dynamics that are activated near Tg. However, plots of relaxation times as determined by both techniques versus temperature appear to converge at Tg. An increase in the relative humidity results in moderately higher loss of volatiles (methyl acetate, ethyl acetate and limonene) and greater oxidation rates. In general, there is a good correlation between relaxation time and stability, with greater enthalpy relaxation time associated with better stability. Enthalpy relaxation time appears to be a useful predictor of stability for both loss of volatiles and oxidation of limonene.
Read full abstract