AbstractTo gain deeper insights into radiation belt loss into the atmosphere, a statistical study of MeV electron precipitation during radiation belt dropout events is undertaken. During these events, electron intensities often drop by an order of magnitude or more within just a few hours. For this study, dropouts are defined as a decrease by at least a factor of five in less than 8 hours. Van Allen probe measurements are employed to identify dropouts across various parameters, complemented by precipitation data from the CALorimetric Electron Telescope instrument on the International Space Station. A temporal analysis unveils a notable increase in precipitation occurrence and intensity during dropout onset, correlating with the decline of SYM‐H, the north‐south component of the interplanetary magnetic field, and the peak of the solar wind dynamic pressure. Moreover, dropout occurrences show correlations with the solar cycle, exhibiting maxima at the spring and autumn equinoxes. This increase during equinoxes reflects the correlation between equinoxes and the SYM‐H index, which itself exhibits a correlation with precipitation during dropouts. Spatial analysis reveals that dropouts with precipitation penetrate into lower L‐star regions, mostly reaching L‐star <4, while most dropouts without precipitation don't penetrate deeper than L‐star 5. This is consistent with the larger average dimensions of dropouts associated with precipitation. During dropouts, precipitation is predominantly observed in the dusk‐midnight sector, coinciding with the most intense precipitation events. The results of this study provide insight into the contribution of precipitation to radiation belt dropouts by deciphering when and where precipitation occurred.