Viral infections in low-income countries such as Brazil pose a significant challenge for medical authorities, with epidemics such as Zika virus infection having lasting effects. The increase in microcephaly among newborns has prompted investigations into the association between Zika virus and this congenital syndrome. The severity and prevalence of microcephaly led to the declaration of national and international emergencies. Extensive research has been conducted to understand the teratogenic effects of Zika virus, particularly its impact on neural progenitor cells in the fetal brain. Various pre- and postnatal imaging techniques, such as ultrasound, magnetic resonance imaging (MRI), and postnatal computed tomography (CT), have played crucial roles in diagnosing and monitoring malformations linked to congenital Zika virus infection in the central nervous system (CNS). These modalities can detect brain parenchymal abnormalities, calcifications, cerebral atrophy, and callosal anomalies. Additionally, three-dimensional ultrasound and fetal MRI provide detailed anatomical images, while CT can identify calcifications that are not easily detected by other methods. Despite advancements in imaging, there are still unanswered questions and ongoing challenges in comprehending the long-term effects and developmental impairments in children affected by Zika virus. Radiologists continue to play a crucial role in diagnosing and assisting in the management of these cases.
Read full abstract