Potential relationships among heavy air pollution, weather conditions, and meteorological effects are unclear and require further investigation, especially for areas with complex terrains, such as the Sichuan Basin (SCB), one of the most polluted regions in China. In this study, air pollution in the SCB was examined and 18 regional persistent heavy pollution events (RPHEs) were identified for the winters of 2014–2018. The average persistent period of the RPHEs was 8.89 days, and the number of affected cities was 17. Based on ground-based observations, CALIPSO satellite data, reanalysis data, and backward trajectory calculations, the synergistic effects of the thermodynamic structures, synoptic circulations and the radiative feedback of aerosols on the formation of RPHEs were revealed. The results can be summarized as follows: (1) An abnormal warming center, attributing to the warm southerly advection in the upper layer and the cold air dammed by the topography near the surface, always presented around 800–700 hPa to form a deep stable layer. (2) The diurnal variations in vertical motions triggered by the thermodynamic structures could regulate the pollution episodes. During the daytime, pollutants accumulated rapidly and thoroughly mixed under the control of sinking airflow from 800 hPa layer to the ground. At night, pollutants sometimes slowly diffused when weak ascending airflow appeared. (3) Forced by the stable layer and topography of the Tibetan Plateau, the local circulation was confined within SCB, resulting in the intensive mixing of local emissions and transport pollutants from other regions. This situation could be maintained for a long time with stable synoptic circulation in winter, leading to the formation of RPHEs. (4) The pollution episodes were featured with multi-layer pollutants above SCB according to the CALIPSO observations, including the local anthropogenic aerosols near the surface, dust aerosols originating from the Taklamakan Desert, and biomass burning aerosols from Southeast Asia. Solar absorption aerosols, including black carbon and dust above the region, could cause meteorological feedback, making the vertical layer more stable and enhancing the persistence and intensity of the pollution episodes. This study highlights the appreciable effects of synoptic circulations on the vertical thermodynamic structures of the atmosphere and air quality, and raises the understanding of the environmental and climate impacts of RPHEs in complex terrains.
Read full abstract