Endurance exercise induces cardiovascular adaptations; the athletic phenotypes of the heart and arteries are well characterized, but few studies have investigated the effects of chronic exercise on the venous system. The aim of this study was to describe the anatomy and function of lower-limb deep and superficial veins in athletes compared with controls. Endurance-trained athletes and untrained controls (13 males, 7 females per group) were examined using ultrasound to measure vein diameter and flow, and air plethysmography to assess calf venous volume dynamics and muscle pump function at rest, during a single step, ambulation (10 steps) and after acute treadmill exercise (30 min ∼80% age-predicted heart rate maximum). Diameters of three of the seven deep veins assessed were larger in athletes (P ≤ 0.0167) and more medial calf perforators were detectable (5 vs. 3, P = 0.0039). Calf venous volume was 22% larger in athletes (P = 0.0057), and calf muscle pump ejection volume and ambulatory venous volume after 10 steps were both greater in athletes (20 and 46% respectively, P ≤ 0.0482). Following acute exercise, flow recovery profiles in deep and superficial veins draining the leg were not different between groups, despite athletes performing approximately four times more work. After exercise, venous volume and ejection volume were reduced by ∼20% in athletes with no change in controls (interaction, P ≤ 0.0372) and although ambulatory venous volume reduced, this remained greater in athletes. These findings highlight venous adaptations that compensate for the demands of regular endurance exercise, all of which are suited to enhance flow through the lower-limb venous system.NEW & NOTEWORTHY Although much literature exists describing adaptations to the heart and arteries in response to endurance exercise training, less is known about the effects on the venous system. Characteristics of "the athlete's vein" described here include deep and perforator vein remodeling, improved drainage, and greater calf venous volume at rest and on calf muscle pump activation. Following exercise, athletes demonstrated prompt flow recovery and appropriate volume reductions, and veins beneficially adapt to better tolerate the demands of regular physical activity.