This contribution describes the homopolymerization of styrene and the copolymerization of ethylene and styrenic comonomers mediated by the single-site bimetallic "constrained geometry catalysts" (CGCs), (mu-CH2CH2-3,3'){(eta(5)-indenyl)[1-Me2Si(tBuN)](TiMe2)}2 [EBICGC(TiMe2)2; Ti2], (mu-CH2CH2-3,3'){(eta(5)-indenyl)[1-Me2Si(tBuN)](ZrMe2)}2 [EBICGC(ZrMe2)2; Zr2], (mu-CH2-3,3'){(eta(5)-indenyl)[1-Me2Si(tBuN)](TiMe2)}2 [MBICGC(TiMe2)2; C1-Ti2], and (mu-CH2-3,3'){(eta(5)-indenyl)[1-Me2Si(tBuN)](ZrMe2)}2 [MBICGC(ZrMe2)2; C1-Zr2], in combination with the borate activator/cocatalyst Ph3C+ B(C6F5)4- (B1). Under identical styrene homopolymerization conditions, C1-Ti2 + B1 and Ti2 + B1 exhibit approximately 65 and approximately 35 times greater polymerization activities, respectively, than does monometallic [1-Me2Si(3-ethylindenyl)(tBuN)]TiMe2 (Ti1) + B1. C1-Zr2 + B1 and Zr2 + B1 exhibit approximately 8 and approximately 4 times greater polymerization activities, respectively, than does the monometallic control [1-Me2Si(3-ethylindenyl)(tBuN)]ZrMe2 (Zr1) + B1. NMR analyses show that the bimetallic catalysts suppress the regiochemical insertion selectivity exhibited by the monometallic analogues. In ethylene copolymerization, Ti2 + B1 enchains 15.4% more styrene (B), 28.9% more 4-methylstyrene (C), 45.4% more 4-fluorostyrene (D), 41.2% more 4-chlorostyrene (E), and 31.0% more 4-bromostyrene (F) than does Ti1 + B1. This observed bimetallic chemoselectivity effect follows the same general trend as the pi-electron density on the styrenic ipso carbon (D > E > F > C > B). Kinetic studies reveal that both Ti2 + B1 and Ti1 + B1-mediated ethylene-styrene copolymerizations follow second-order Markovian statistics and tend to be alternating. Moreover, calculated reactivity ratios indicate that Ti2 + B1 favors styrene insertion more than does Ti1 + B1. All the organozirconium complexes (C1-Zr2, Zr2, and Zr1) are found to be incompetent for ethylene-styrene copolymerization, yielding only mixtures of polyethylene and polystyrene. Model compound (mu-CH2CH2-3,3'){(eta(5)-indenyl)[1-Me2Si(tBuN)][Ti(CH2Ph)2]}2 {EBICGC[Ti(CH2Ph)2]2; Ti2(CH2Ph)4} was designed, synthesized, and structurally characterized. In situ activation studies with cocatalyst B(C6F5)3 suggest an eta(1)-coordination mode for the benzyl groups, thus supporting the proposed polymerization mechanism. For ethylene-styrene copolymerization, polar solvents are found to increase copolymerization activities and coproduce atactic polystyrene impurities in addition to ethylene-co-styrene, without diminishing the comonomer incorporation selectivity. Both homopolymerization and copolymerization results argue that substantial cooperative effects between catalytic sites are operative.
Read full abstract