Nanotechnology is extensively employed in various aspects of dentistry, including restorative dentistry, because of its substantial improvement and promising potential in the clinical efficacy of restorative materials and procedures. The main purpose of this review is to explore the different uses of nanomaterials in restorative dentistry. The review is divided into two parts: the current review (Part 1) focuses on the prevention of demineralization and promotion of remineralization, while the upcoming review (Part 2) will discuss the reinforcement of restorative materials and their therapeutic applications. Nanofillers are added to dental materials to boost their antibacterial, anticaries, and demineralization inhibitory capabilities. Additionally, they improve remineralization and enhance both mechanical properties and therapeutic features. The nanoparticles (NPs) used to increase antibacterial and remineralization inhibitions can be classified into two main groups: inorganic and organic NPs. Examples of inorganic NPs include silver, zinc oxide, titanium oxide, and gold. Examples of organic NPs include silica, quaternary ammonium salt monomers, and chitosan NPs. Furthermore, the nanofillers utilized to enhance the process of remineralization include various types such as metals, nano-hydroxyapatite, nano-amorphous calcium phosphate (ACP), dicalcium phosphate NPs, casein phosphopeptide-ACP (CPP-ACP), and calcium fluoride NPs. These uses underscore the potential applications of NPs in restorative dentistry, although there are still some limitations to address.
Read full abstract