The liver is innervated by primary sensory nerve fibres releasing the neuropeptide calcitonin gene-related peptide (CGRP). Elevated plasma levels of CGRP have been found in patients with liver fibrosis or cirrhosis. We hypothesised that signalling of CGRP and its receptors might regulate liver fibrosis and propose a novel potential target for the treatment. In this study, hepatic expression of CGRP and its receptor component, the receptor activity-modifying protein 1 (RAMP1), was dramatically increased in diseased livers of patients. In a murine liver fibrosis model, deficiency of RAMP1 resulted in attenuated fibrogenesis characterized by less collagen deposition and decreased activity of hepatic stellate cells (HSC). Mechanistically, activity of the TGFβ1 signalling core component Smad2 was severely impaired in the absence of RAMP1, and Yes-associated protein (YAP) activity was found to be diminished in RAMP1-deficient liver parenchyma. In vitro, stimulation of the HSC line LX-2 cells with CGRP induces TGFβ1 production and downstream signalling as well as HSC activation documented by increased α-SMA expression and collagen synthesis. We further demonstrate in LX-2 cells that CGRP promotes YAP activation and its nuclear translocation subsequent to TGFβ1/Smad2 signals. These data support a promotive effect of CGRP signalling in liver fibrosis via stimulation of TGFβ1/Smad2 and YAP activity.