ABSTRACT Breast cancer has been recognized as the most common cancer affecting women. Extremely low-frequency electromagnetic field (ELF-EMF) exposure can influence cellular activities such as cell-cell junctions and metastasis. However, more research is required to determine these fields’ underlying mechanisms of action. Since cadherin switching is an important process during EMT (epithelial-mesenchymal transition), in this study, cadherin switching was regarded as one of the probable mechanisms of the effect of ELF-EMFs on metastasis suppression. For five days, breast cells received a 1 Hz, 100mT ELF-EMF (2 h/day). Cell invasion and migration were assessed in vitro by the Scratch wound healing assay and Transwell culture chambers. The expression of E- and N-cadherin was assessed using real-time PCR, western blotting, and Immunocytochemistry. ELF-EMF dramatically reduced the migration and invasion of MDA-MB 231 malignant cells compared to sham exposure, according to the results of the scratch test and the Transwell invasion test. The mRNA and protein expression levels of E-cadherin showed an increase, while the N-cadherin expression was found with a decrease, in MDA-MB231 cells receiving 1 Hz EMF compared to sham exposure. E-cadherin’s mRNA and protein expression levels were enhanced in MCF10A cells receiving 1 Hz EMF compared to sham exposure. ELF-EMF can be used as a method for the multifaceted treatments of invasive breast cancer.
Read full abstract