Activatable microbubble contrast agents for contrast-enhanced ultrasound have a potential role for measuring physiologic and pathologic states in deep tissues, including tumor acidosis. In this study, we describe a novel observation of increased harmonic oscillation of phosphatidylcholine microbubbles (PC-MBs) in response to lower ambient pH using a clinical ultrasound scanner. MB echogenicity and nonlinear echoes were monitored at neutral and acidic pH using B-mode and Cadence contrast pulse sequencing (CPS), a harmonic imaging technique at 7.0 and 1.5 MHz. A 3-fold increase in harmonic signal intensity was observed when the pH of PC-MB suspensions was decreased from 7.4 to 5.5 to mimic normal and pathophysiological levels that can be encountered in vivo. This pH-mediated activation is tunable based on the chemical structure and length of phospholipids composing the MB shell. It is also reliant on the presence of phosphate groups, as the use of lipids without phosphate instead of phospholipids completely abrogated this phenomenon. The increased harmonic signal likely is the result of increased MB oscillation caused by a decrease of the interfacial tension induced at a lower pH, altering the lipid conformation. While relative signal changes are interpreted clinically as mostly related to blood flow, pH effects could be significant contributors, particularly when imaging tumors. While our observation can be used clinically, it requires further research to isolate the effect of pH from other variables. These findings could pave the way toward for the development of new smart ultrasound contrast agents that expand the clinical utility of contrast-enhanced ultrasound.
Read full abstract