Glioblastomas (GBMs), the most prevalent primary malignant brain tumors, present significant challenges due to their invasive nature, high recurrence rates, and limited treatment options. Radiotherapy is a cornerstone in the management of GBMs; however, resistance to treatment poses a substantial obstacle. This study investigates the role of adipokine C1q/TNF-related protein 1 (CTRP1) in the radio-sensitivity of GBMs, utilizing both X-ray and carbon ion irradiation. Expression analyses revealed elevated CTRP1 and CD133 levels in GBMs tissues, which were associated with poor patient survival. Carbon ion irradiation demonstrated superior growth inhibition compared to X-ray, particularly in U87 (high CD133) cells. Moreover, CTRP1 expression increased following radiation exposure, especially after X-ray treatment. Knockdown of CTRP1 enhanced radio-sensitivity by reducing cell proliferation and increasing apoptosis, while exacerbating oxidative stress. Bioinformatics analysis revealed CTRP1's involvement in DNA damage repair pathways. Our findings establish a novel connection between CTRP1 and cellular radio-sensitivity. Targeting CTRP1, especially in U87 (high CD133) cells, enhances GBMs radio-sensitivity, offering potential therapeutic avenues.