Lectins are omnipresent carbohydrate binding proteins that are involved in a multitude of biological processes. Unearthing their binding properties is a powerful tool toward the understanding and modification of their functions in biological applications. Herein, we present the synthesis of glycopolymers with a brush architecture via a "grafting from" methodology. The use of a versatile 2-oxazoline inimer was demonstrated to open avenues for a wide range of 2-oxazoline/acrylamide bottle brush polymers utilizing aqueous Cu-mediated reversible deactivation radical polymerization (Cu-RDRP). The polymers in the obtained library were assessed for their thermal properties in aqueous solution and their binding toward the C-type animal lectins dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) and mannose-binding lectin (MBL) via surface plasmon resonance spectrometry. The encapsulation properties of a hydrophobic drug-mimicking compound demonstrated the potential use of glyco brush copolymers in biological applications.
Read full abstract