To facilitate cross-domain data interaction in the Industrial Internet of Things (IIoT), establishing trust between multiple administrative domains is essential. Although blockchain technology has been proposed as a solution, current techniques still suffer from issues related to efficiency, security, and privacy. Our research aims to address these challenges by proposing a lightweight, trusted data interaction scheme based on blockchain, which reduces redundant interactions among entities. We enhance the traditional Practical Byzantine Fault Tolerance (PBFT) algorithm to support lightweight distributed consensus in large-scale IIoT scenarios. Introducing a composite digital signature algorithm and incorporating veto power minimizes resource consumption and eliminates ineffective consensus operations. The experimental results show that, compared with PBFT, our scheme reduces latency by 27.2%, thereby improving communication efficiency and resource utilization. Furthermore, we develop a lightweight authentication technique specifically for cross-domain IIoT, leveraging blockchain technology to achieve distributed collaborative authentication. The performance comparisons indicate that our method significantly outperforms traditional schemes, with an average authentication latency of approximately 151 milliseconds. Additionally, we introduce a trusted federated learning (FL) algorithm that ensures comprehensive trust assessments for devices across different domains while protecting data privacy. Extensive simulations and experiments validate the reliability of our approach.
Read full abstract