Atlantic sturgeon are anadromous fish that spend much of their life in near-shore environments. They are designated as "threatened" by the Committee on the Status of Endangered Wildlife in Canada and listed by the IUCN as "near threatened." In Canada, Atlantic sturgeon support small commercial fisheries in the Saint John River, New Brunswick, and the St. Lawrence River, Quebec. While occupying the marine environment, the species is susceptible to various anthropogenic stressors, including by-catch in trawl fisheries and through interactions with coastal engineering projects such as tidal power development. Atlantic sturgeon are also susceptible to implantation of acoustic tags used by researchers to study their movement ecology. These stressors can cause physiological and behavioural changes in the fish that can negatively impact their viability. Because the species are commercially important, and are also of conservation concern, it is important to understand stress responses of Atlantic sturgeon to better mitigate the effects of increased industrial activity in the coastal zone. This study used proteomics to identify and characterize protease activity and identify putative novel protein biomarkers in the epidermal mucus of Atlantic sturgeon. Changes in protein profiles in Atlantic sturgeon epidermal mucus as a result of by-catch and surgery stress were investigated using one-dimensional sodium dodecyl sulphate-polyacrylamide gel electrophoresis and mass spectrometry. Proteolytic activity was identified and characterized using inhibition zymography, which provided information on the classes of proteases that are associated with stress. Samples were collected from Atlantic sturgeon on the Minas Basin, Nova Scotia, Canada, after capture by brush weir and otter trawl, and after surgical implantation of a V16-69 kHz VEMCO acoustic tag. Significant proteins found in the epidermal mucus include various inflammatory proteins, with calmodulin and complement 9 found ubiquitously, and more rarely lysosome C, identified in a brush weir capture sample. Serum albumin, a blood plasma protein, was another ubiquitous protein and verifies how the sample collection method provides a picture of the internal systems. Protease activity was dominantly exhibited by matrix metalloproteases and serine proteases in all sample collections, with serine proteases more active in otter trawl captures than in brush weir captures. By identifying potential protein biomarkers of stress, this study is an example of a non-invasive method for measuring stress in Atlantic sturgeon. Understanding the defence mechanism and release of non-specific biomarkers can be used to improve conservation regulations, as well as to contribute to the limited scientific knowledge on the stress response of Atlantic sturgeon.