Recent evidence indicates that sex-based differences in cardiovascular disease (CVD) begin early in life, particularly when associated with risk factors such as a sedentary lifestyle. CVD is associated with elevated sympathetic nerve activity (SNA), quantified as increased SNA burst activity in humans. Whether burst characteristics are influenced by sex or sedentary conditions at younger ages is unknown. The purpose of our study is to compare SNA bursts in active and sedentary female and male rats at ages including prepuberty and young adulthood. We hypothesized that burst characteristics and blood pressure are higher under sedentary conditions and lower in female rats compared with males. We analyzed splanchnic SNA (SpSNA) recordings from Inactin-anesthetized male and female rats at 4-, 8-, and 16-wk of age. Physically active and sedentary rats were each housed in separate, environmentally controlled chambers where physically active rats had free access to an in-cage running wheel. Sympathetic bursts were obtained by rectifying and integrating the raw SpSNA signal. Burst frequency, burst height, and burst width were calculated using the Peak Parameters extension in LabChart. Our results showed that sedentary conditions produced a greater burst width in 8- and 16-wk-old rats compared with 4-wk-old rats in both males and females (P < 0.001 for both). Burst frequency and incidence were both higher in 16-wk-old males compared with 16-wk-old females (P < 0.001 for both). Our results suggest that there are sedentary lifestyle- and sex-related mechanisms that impact sympathetic regulation of blood pressure at ages that range from prepuberty into young adulthood.NEW & NOTEWORTHY The mechanisms of decreased incidence of cardiovascular disease (CVD) in reproductive-age women compared with age-matched men are unknown. The strong association between elevated sympathetic activity and CVD led us to characterize splanchnic sympathetic bursts in female and male rats. Prepubescent males and females exhibited narrower sympathetic bursts, whereas young adult males had higher resting burst frequency compared with age-matched females. Sex-based regulation of sympathetic activity suggests a need for sex-dependent therapeutic strategies to combat CVD.