Developments in waste incineration technology in terms of efficient fuel preparation, combustion, and emissions reduction, as well as the growing needs of the community in terms of electricity, water, and air conditioning loads, are the prime motive for this study. This study presents a novel approach, in which three models of the fluidized bed combustion of municipal waste for simultaneous power generation, freshwater production, and district cooling are analyzed for their energy and exergy performance. The three simultaneously evaluated utility models are different configurations of a fluidized bed combustion system with Rankine cycle power generation, cooling with a vapor absorption refrigeration system, and fresh water production using multiple effect desalination. The output from the turbine, cooling system, and desalination system is determined using the Engineering Equations Solver for different boiler operating pressures. Energy and exergy analysis data for different pressures are used to identify the best configuration. Two variants of the absorption cooling system, namely, single effect and double effect, are considered. The variants of the multiple-effect desalination are the three-stage and five-stage methods. Input parameters used in this study are municipal solid waste generation and composition data collected for an urban community in an arid climate zone with high demand for electric power, cooling, and fresh water. Model 2, which contains two turbines with the reheating and cooling systems connected to a high-pressure turbine and water desalination connected to a low-pressure turbine, gave the best overall performance. Significant savings in terms of the replacement of conventional energy were observed from these waste conversion plants with greater benefits in arid weather conditions. The results obtained by different models under different operating criteria constitute a guideline for municipal planners for the selection of appropriate waste utilization technology, as well as the appropriate operations.