Scintillators fabricated from organic–inorganic layered perovskites have attracted wide attention due to their excellent properties, including fast decay times, superior light yield, and high exciton binding energy. In relation to their optoelectronic properties, hybrid organic–inorganic perovskites are known for their tunability, which could be manipulated by modifying the organic cations. In this study, we investigate the optical and scintillation properties of lead halide perovskites A2PbBr4, where A vary from amylammonium (AA), hexylammonium (HA), octylammonium (OA), and benzylammonium (BZA) organic ligands. Photoluminescence (PL) spectra display dual peaks due to surface and bulk trap states contributions, while fast average decay times from time-resolved photoluminescence (TRPL) for all samples are within the range of 0.69 ± 0.11–0.99 ± 0.13 ns. The optical band gap of these hybrid perovskites is within ∼3 eV range, which fulfill the criteria of promising scintillators. Radioluminescence (RL) spectra show negative thermal quenching behavior (NTQ) in all samples, with the AA2PbBr4 peak intensity appearing at relatively lower temperature compared to other samples. Thermoluminescence (TL) measurement reveals trap-free states in AA2PbBr4, while other samples possess shallow traps (<40 meV) as well as low trap density, which is beneficial for fast-decay scintillators, X-ray detection and energy conversion for solar cells. Overall, our results demonstrate that the extension of linear organic chains in lead-based perovskite is a deterministic strategy for a fast response hybrid-based scintillator to date.