In this study, we employ a phenomenologically modified relativistic Dirac framework coupled with the σ - ω quark-meson coupling model to look into the properties of nuclear matter. By combining scalar and vector linear potential forms and incorporating perturbative adjustments for various factors such as centre-of-mass motion, gluonic, and pionic effects, we aim to find the nucleon’s mass in a vacuum. Then, we consider nucleon-nucleon interactions are constructed within a mean-field approximation. Our methodology systematically explores key characteristics of nuclear matter, including equations of state, compressibility, binding energy, and pressure. Furthermore, we compute essential parameters such as the nucleon charge radius, axial-vector coupling constant, pion coupling constant, nuclear sigma term, sensitivity, and potential strengths. And also, we calculate symmetry energy, density slop (L) and incompressibility ( K0 ). In addition, we compute the mass and radius of a neutron star and provide a graphical representation illustrating the relationship between mass and radius. To validate our results, we comprehensively compare them with other theoretical models and quark-meson coupling approaches, confirming the precision and reliability of our theoretical paradigm. Overall, our study enhances our understanding of the fundamental properties of nuclear matter and underscores their relevance in elucidating complex astrophysical phenomena.
Read full abstract