ABSTRACT Malonamide derivatives, which are the most extensively investigated extractants for solvent extraction of lanthanides, actinides, and platinum group metal ions, were deuterated by using Pd/C and Rh/C catalysts in a D2O/2-propanol mixture. This method replaces 1H atoms in the malonamides with 2H atoms at a controllable deuteration rate. The maximum rate reached about 75%, determined by nuclear magnetic resonance and electrospray ionization – mass spectrometry. The extraction behavior of metal ions by the malonamides was unchanged by the deuteration. Deuterated malonamides are a powerful tool for fundamental research on solvent extraction systems and for structural analysis of organic phases. The large difference in the cross section of coherent neutron scattering between 1H and 2H leads to a large difference in neutron scattering length density of malonamide derivatives before and after the deuteration. Therefore, using deuterated malonamides in small-angle neutron scattering and neutron reflectivity studies may help to reveal the microscopic structure of the specific solute species in the bulk organic phase and at the liquid–liquid interface, respectively. In this paper, we report the advantage of the deuterated malonamides for a contrast-matching method in the SANS experiment. This deuteration method could be generalized and extended to a wide variety of extractant molecules.
Read full abstract