To elucidate the impacts of scallop farming on the biogeochemical characteristics of low molecular weight (LMW, <1 kDa) dissolved organic matter (DOM), samples collected from a bay scallop mariculture area (MA) and its surrounding areas were determined for absorption and fluorescence spectroscopy after microfiltration and centrifugal ultrafiltration. The values of absorption coefficient a350 showed a spatial variation trend of inshore area (IA) > MA > non-mariculture area (NMA) for both bulk (<0.7 μm) and LMW fractions. Four fluorescent components, namely two protein-like components (tryptophan-like C1 and tyrosine-like C2) and two humic-like components (microbial humic-like C3 and terrestrial humic-like C4), were identified. Scallop farming influenced DOM transformation by altering phytoplankton abundance and promoting microbial degradation. In July, the net contributions of phytoplankton to the spectroscopy parameters of LMW-DOM in the surface seawater were 11.0% for a350, 4.3% for C1, 0.8% for C2, 0.6% for C3 and 3.0% for C4, respectively; the corresponding values of bulk DOM in the surface seawater were 24.3% for a350, 20.1% for C1, 5.9% for C2, 2.0% for C3, 2.9% for C4, respectively. Compared with NMA, the contributions of microbial degradation to a350 in MA's surface seawater increased by 9.0% for LMW-DOM and 6.9% for bulk DOM in July; however, the effects on different fluorescent components varied. In August, compared with NMA, the contributions of microbial degradation to spectroscopy parameters in the bottom water of MA decreased by 35.7% for a350, 6.3% for C2, 1.3% for C3, and 4.4% for C4 for LMW-DOM fraction; for bulk DOM, the corresponding contribution decreased by 10.8% for C1. These variations indicate that protein-like substances from scallop aquaculture are easily degraded into LMW substances, while humic-like substances degradation diminishes over time.
Read full abstract