This study takes a unique approach by investigating the integration of Brain–Computer Interfaces (BCIs) and Building Information Modeling (BIM) within residential architecture. It explores their combined potential to foster neuro-responsive, sustainable environments within the framework of Construction 5.0. The methodological approach involves real-time BCI data and subjective evaluations of occupants’ experiences to elucidate cognitive and emotional states. These data inform BIM-driven alterations that facilitate adaptable, customized, and sustainability-oriented architectural solutions. The results highlight the ability of BCI–BIM integration to create dynamic, occupant-responsive environments that enhance well-being, promote energy efficiency, and minimize environmental impact. The primary contribution of this work is the demonstration of the viability of neuro-responsive architecture, wherein cognitive input from Brain–Computer Interfaces enables real-time modifications to architectural designs. This technique enhances built environments’ flexibility and user-centered quality by integrating occupant preferences and mental states into the design process. Furthermore, integrating BCI and BIM technologies has significant implications for advancing sustainability and facilitating the design of energy-efficient and ecologically responsible residential areas. The study offers practical insights for architects, engineers, and construction professionals, providing a method for implementing BCI–BIM systems to enhance user experience and promote sustainable design practices. The research examines ethical issues concerning privacy, data security, and informed permission, ensuring these technologies adhere to moral and legal requirements. The study underscores the transformational potential of BCI–BIM integration while acknowledging challenges related to data interoperability, integrity, and scalability. As a result, ongoing innovation and rigorous ethical supervision are crucial for effectively implementing these technologies. The findings provide practical insights for architects, engineers, and industry professionals, offering a roadmap for developing intelligent and ethically sound design practices.